simply typed λ-calculus

logical verification

week 2

2004 09 15
newsflash

prime number theorem formalized

write $\pi(n)$ for the number of primes below n, then

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln(n)} = 1$$

http://www.andrew.cmu.edu/user/avigad/isabelle/

- Jeremy Avigad
- Kevin Donelly
- David Gray
overview

last week

<table>
<thead>
<tr>
<th>Logic proofs</th>
<th>Type theory λ-terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>on paper</td>
<td></td>
</tr>
<tr>
<td>in Coq</td>
<td></td>
</tr>
</tbody>
</table>
why typed λ-calculus?

C program

```c
#include <math.h>

double findzero(double (*f)(double), double z) {
    double x, y;
    while (x = z, y = (*f)(x), z = x - y/((f)(x + y) - y)*y,
          fabs(z/x - 1) >= 1e-15);
    return z;
}

double sqrminus2(double x) { return x*x - 2; }

main() {
    printf("%.15g\n", findzero(&sqrminus2, 1));
}
```
programming styles

- imperative programming
 C
- object-oriented programming
 C++
 java
- logic programming
 prolog
- functional programming
 lisp
 ML ‘typed’
 haskell ‘lazy’ calculations with infinite data structures
functional programming

functional values become first class objects

no need to name functions anymore

\[
\text{findzero}(\ &\text{sqrmin}us2 \ , \ldots)
\]

\[
\downarrow
\]

\[
\text{findzero}(\ \lambda x.\ x^x - 2 \ , \ldots)
\]

functions also can return functional values

‘higher order’ functions
currying

\[f : A \times B \rightarrow C \]

partial evaluation

\[f(a, \cdot) : B \rightarrow C \]

curried version of the function:

\[f : A \rightarrow (B \rightarrow C) \]

\[f : A \rightarrow B \rightarrow C \]
the type of findzero

\[(\text{double} \to \text{double}) \times \text{double} \to \text{double}\]

curried:

\[(\text{double} \to \text{double}) \to \text{double} \to \text{double}\]

\[
\uparrow \quad \uparrow
\]

atomic type function type
simply typed λ-calculus

types

- atomic types
 \[A \, B \, C \, \ldots \]

- function types
 \[A \rightarrow B \]
terms

- **variables**

 \[x \ y \ z \ldots \]

- **lambda abstraction**

 \[\lambda x : A. t \]

 the function that maps the variable \(x \) of type \(A \) to \(t \)

- **function application**

 \[t \ u \]

 the result of applying the function \(t \) to the argument \(u \)
parentheses

- function types associate to the right
- application associates to the left

these conventions are natural for curried functions:

\[f : A \to (B \to C) \]

\[(f \ a) \ b \]

\[\downarrow \]

\[f : A \to B \to C \]

\[f \ a \ b \]
simplest example

identity function on A

term $\lambda x : A. x$

type $A \rightarrow A$
example in the real numbers

term \(\lambda x : \mathbb{R}. x^2 - 2 \)

type \(\mathbb{R} \rightarrow \mathbb{R} \)

\[
(\lambda x : \mathbb{R}. x^2 - 2) \ 1 = 1^2 - 2 = -1
\]

\[
(\lambda x : \mathbb{R}. x^2 - 2) \ 2 = 2^2 - 2 = 2
\]

\(\uparrow\)

\(\beta\)-step
bigger example

term $\lambda x : (A \to B) \to C \to D. \lambda y : C. \lambda z : B. x (\lambda w : A. z) y$

type $((A \to B) \to (C \to D)) \to C \to B \to D$
type derivations

judgments

\[\Gamma, x_1 : A_1, x_2 : A_2, \ldots, x_n : A_n \vdash t : A \]

\(\Gamma \)
context

list of variable declarations
the three typing rules

variable rule

\[
\Gamma, x : A, \Gamma' \vdash x : A
\]
x does not occur in \(\Gamma'\)

abstraction rule

\[
\Gamma, x : A \vdash t : B \\
\Gamma \vdash (\lambda x : A.t) : (A \rightarrow B)
\]

application rule

\[
\Gamma \vdash t : A \rightarrow B \quad \Gamma \vdash u : A \\
\Gamma \vdash t \ u : B
\]
type derivation for the example

\[\vdash \lambda x : (A \to B) \to C \to D. \lambda y : C. \lambda z : B. x (\lambda w : A. z) y : \\
((A \to B) \to (C \to D)) \to C \to B \to D \]
the Curry-Howard-de Bruijn isomorphism

recap minimal logic

- **formulas**
 - propositional variables
 - implication $A \rightarrow B$

- **rules**
 - implication introduction
 - implication elimination
recap example natural deduction

$((A \rightarrow B) \rightarrow (C \rightarrow D)) \rightarrow C \rightarrow B \rightarrow D$
implication introduction & the abstraction rule

\[\boxed{A^x} \]

\[\vdash \]

\[\frac{B}{A \rightarrow B} \quad I[x] \rightarrow \]

\[\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash (\lambda x : A. t) : (A \rightarrow B)} \]
implication elimination & the application rule

\[
\begin{align*}
\vdash & \quad \vdash \\
A \to B & \quad A & \quad E \to \\
\hline
& B
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash t : A \to B & \quad \Gamma \vdash u : A \\
\hline
\Gamma \vdash t \ u : B
\end{align*}
\]
isomorphism

propositional variable \sim type variable
the connective \rightarrow \sim the type constructor \rightarrow
formula \sim type

assumption \sim variable
implication introduction \sim lambda abstraction
implication elimination \sim function application
proof \sim term

provability \sim ‘inhabitation’
proof checking \sim type checking
BHK-interpretation

Brouwer, Heyting, Kolmogorov
intuitionistic logic

proof of $A \rightarrow B \sim$ function that maps proofs of A to proofs B
proof of \bot does not exist
proof of $A \land B \sim$ pair of a proof of A and a proof of B
proof of $A \lor B \sim$ either a proof of A or a proof of B
propostions as types

\[\lambda x : A. \, x : A \to A \]

the function type \(A \to A \) represents a proposition
the term \(\lambda x : A. \, x \) represents a proof of that proposition

\(\lambda \)-terms are **proof objects**
term syntax

• x

• fun x : A => t

• t u
commands

- Check
 prints a term with its type

- Print
 print the term for a symbol with its type
example

fun x : A => x : A -> A

Coq as proof checker
'->' represents implication

Coq as functional programming language
'->' represents function type
proof objects

Lemma I : A -> A.
...
Qed.
Print I.
example

$((A \rightarrow B) \rightarrow (C \rightarrow D)) \rightarrow C \rightarrow B \rightarrow D$
summary

this week

<table>
<thead>
<tr>
<th>logic proofs (on paper)</th>
<th>type theory terms (in Coq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>