The Model-based Approach to Computer-aided Medical Decision Support

Lecture 4: Causal Independence

Peter Lucas
peterl@cs.ru.nl

Institute for Computing and Information Sciences
Radboud University Nijmegen
The Netherlands
Introduction

- Clinical decision support, because . . .
 - doctors make more mistakes than you would accept (as a patient)
 - some of their actions are harmful

- Deployment of:
 - probabilistic graphical models
 - logical methods
 - combinations

- Causal modelling for the management of infectious disease (work together with Stefan Visscher) and detection of breast cancer (work with Marina Velikova)
Problem

- ICU at Utrecht MC
- Diagnosis and antimicrobial treatment of patients with ventilator-associated pneumonia (VAP)
- About 15-20% of ICU patients develop VAP
- Mortality rate: up to 40%
- Up to 50% of antibiotics in ICUs are prescribed for airway infections
Software Infrastructure

- PHP Module
- Apache HTTP Server
- Web Browser

Relations:
- SQL
- Data
- Variable-value pairs
- Variable-value-probability triples
- Bayesian Network

CPR

Reasoning System
Global Model Pneumonia

- hospitalisation
- colonisation
- aspiration
- mechanical ventilation
- immunological status
- symptoms signs, lab
- side effects
- antimicrobial therapy
- organism susceptibility
- coverage

ACAI’09 – p. 5/29
Detailed Pneumonia Network

- hospitalisation
- colonisation PA
- colonisation HI
- colonisation SP
- colonisation
- pneumonia PA
- pneumonia HI
- pneumonia SP
- pneumonia
- symptoms
- signs
- lab
- Antibiotics
- coverage
- overall coverage
- aspiration
- mechanical ventilation
- immunological status
- overall coverage
- coverage
Prediction

\[\Pr(\text{pneumonia}) = 1.0 \quad \text{or} \quad \Pr(\text{pneumonia}) = ? \]
Specification of Interactions

- Compact specification: probability tables
 \[P(X_i \mid \text{pa}(X_i)) \]

 can still be large even when taking into account independence information

- Easy way to map domain knowledge to entries into a probability table

- Way to use qualitative knowledge about interactions as constraints to probabilistic information

- Might be useful in developing applications
People become colonised by bacteria when entering a hospital, which may give rise to pneumonia.
Bayesian-network Modelling

Qualitative

causal modelling

Quantitative

interaction modelling

Cause → Effect

\[P(\text{Inf} \mid \text{BR}_A, \text{BR}_B, \text{BR}_C) \]
Causal Independence

\[P(e \mid C_1, \ldots, C_n) = \sum_{I_1, \ldots, I_n} P(e \mid I_1, \ldots, I_n) \]

\[\times \prod_{k=1}^{n} P(I_k \mid C_k) = \sum_{f(I_1, \ldots, I_n) = e} \prod_{k=1}^{n} P(I_k \mid C_k) \]

Note: \(P(i_k \mid \bar{c}_k) = 0 \) – absent causes don’t contribute
Boolean Interaction

Commutative, associative: $\wedge, \vee, \leftrightarrow, \emptyset, \top, \bot$

Commutative, non-associative: $\downarrow, |$

Non-commutative, associative: p_1, p_2, n_1, n_2

Non-commutative, non-associative: $\rightarrow, \leftarrow, <, >$
Symmetric Boolean Functions

Order of arguments doesn’t matter; defined in terms of exact function e_k:

$$f(I_1, \ldots, I_n) = \bigvee_{k=0}^{n} e_k(I_1, \ldots, I_n) \land \gamma_k$$

where γ_k are Boolean constants only dependent of the function f

Example: threshold function τ_l:

$$\tau_l(I_1, \ldots, I_n) = \bigvee_{k=l}^{n} e_k(I_1, \ldots, I_n)$$
Decomposition by Counting

Threshold function τ_3:

![Diagram showing the decomposition process with threshold function τ_3.]
By antibiotic treatment M clinicians try to cover O at most 2 of the bacteria giving rise to pneumonia

$$P(O \mid C_1, \ldots, C_n, M)$$
Overall Susceptibility

\[P_{\tau_k}(o|C_1, \ldots, C_n, M) = \sum_{k \leq l \leq n} \sum_{e_l(S_1, \ldots, S_n)} \prod_{j=1}^{n} P(S_j | C_j, M) \]

- \(C_j \): causal factor \(j \)
- \(S_j \): susceptibility to medication
- \(M \): treatment by antimicrobial medication
- \(O \): overall outcome
Various Models

Conditional probability distributions: \(P(S_j \mid C_j, M) \)

- **susceptibility I model:**
 \[
 P(s_j \mid C_j, M) = \begin{cases}
 0 & \text{if } C_j = \text{yes}, M = \text{no} \\
 1 & \text{otherwise}
 \end{cases}
 \]

- **susceptibility II model:**
 \(P(s_i \mid \neg c_i, \neg m) = 1 \),
 whereas \(P(s_i \mid \neg c_i, m) = 0 \)

- **susceptibility III model:**
 \[
 P(s_j \mid C_j, M) = \begin{cases}
 1 & \text{if } C_j = \text{yes, } M = \text{yes} \\
 0 & \text{otherwise}
 \end{cases}
 \]
Model I, Colonised by 1
Model II, Colonised by 1
Model III, Colonised by 1
Model II, Colonised by 2
Property

Let $P(E \mid C_1, \ldots, C_n)$ be defined in terms of the Boolean threshold function τ_k using the parameters $P(I_k \mid C_k)$, then:

Theorem: For each k, $0 \leq k \leq n - 1$:

$$P_{\tau_k}(e \mid C_1, \ldots, C_n) \geq P_{\tau_{k+1}}(e \mid C_1, \ldots, C_n)$$

Proof:

$$P_{\tau_k}(e \mid C_1, \ldots, C_n) + \sum_{e_{k+1}(I_1,\ldots,I_n)} \prod_{j=1}^{n} P(I_j \mid C_j) = P_{\tau_{k+1}}(e \mid C_1, \ldots, C_n), \text{ and}$$

$$\sum_{e_{k+1}(I_1,\ldots,I_n)} \prod_{j=1}^{n} P(I_j \mid C_j) \geq 0$$
Predicting Optimal Treatment

153 patients with VAP using the \((S_{\text{III}}, k = 1)\) model

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Bac</th>
<th>m</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>early</td>
<td>2</td>
<td>13</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>SA</td>
<td>25</td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td></td>
<td>100</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI</td>
<td>8</td>
<td></td>
<td>94</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP</td>
<td>3</td>
<td></td>
<td>71</td>
<td>97</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>late</td>
<td>2</td>
<td>33</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>PA</td>
<td>19</td>
<td></td>
<td>85</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC</td>
<td>6</td>
<td></td>
<td>92</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent1</td>
<td>29</td>
<td></td>
<td>88</td>
<td>89</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent2</td>
<td>17</td>
<td></td>
<td>48</td>
<td>98</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Predicting Optimal Treatment

153 patients with VAP using the \((\text{SIII, } k = 2)\) model

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Bac</th>
<th>m</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>early</td>
<td>2</td>
<td>13</td>
<td></td>
<td>67</td>
<td></td>
<td>72</td>
<td></td>
<td>85</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>1</td>
<td>SA</td>
<td>25</td>
<td></td>
<td>42</td>
<td></td>
<td>25</td>
<td>67</td>
<td>28</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>1</td>
<td>HI</td>
<td>8</td>
<td>31</td>
<td>34</td>
<td>41</td>
<td></td>
<td>50</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>1</td>
<td>SP</td>
<td>3</td>
<td>27</td>
<td>47</td>
<td>43</td>
<td>67</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td>2</td>
<td>33</td>
<td></td>
<td>67</td>
<td></td>
<td>79</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td>1</td>
<td>PA</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td>1</td>
<td>AC</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td>1</td>
<td>Ent1</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>28</td>
<td>31</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td>1</td>
<td>Ent2</td>
<td>17</td>
<td>23</td>
<td>40</td>
<td>37</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Image Interpretation

- national breast cancer screening programme
- decision-making under uncertainty
- interpretation of image features in terms of probabilistic graphical models
- from single- to multi-view interpretation
Region features: contrast, size, location, margin, spiculation, etc.

Advantage: a good detection rate per image

Shortcoming: unsatisfactory performance at a patient level because views are treated independently
Multiview Interpretation

Mediolateral oblique view

Craniocaudal view

View–A

View–B
Multiview Bayesian Network

\[
A_i / B_j = (x_1, x_2, ..., x_n)
\]

\begin{itemize}
 \item Interpretation of regions of interest (real-valued feature vector): logistic regression
 \item Combination of region and view information: causal independence
\end{itemize}
Conclusions

Use of modelling approach:

- Select the right qualitative pattern
- Select the right Boolean interaction function
- Fill in arc probabilities $P(I_k | C_k)$

Some future work:

- Study learning of interaction functions from data
- Study other interaction patterns