
Generalising the Interaction Rules in Probabilistic Logic

Arjen Hommersom and Peter J. F. Lucas

Institute for Computing and Information Sciences
Radboud University Nijmegen

Nijmegen, The Netherlands
{arjenh,peterl}@cs.ru.nl

Abstract

The last two decades has seen the emergence of
many different probabilistic logics that use logi-
cal languages to specify, and sometimes reason,
with probability distributions. Probabilistic log-
ics that support reasoning with probability distri-
butions, such as ProbLog, use an implicit definition
of an interaction rule to combine probabilistic ev-
idence about atoms. In this paper, we show that
this interaction rule is an example of a more general
class of interactions that can be described by non-
monotonic logics. We furthermore show that such
local interactions about the probability of an atom
can be described by convolution. The resulting ex-
tended probabilistic logic supports non-monotonic
reasoning with probabilistic information.

1 Introduction

The last two decades has seen the emergence of many dif-
ferent probabilistic logics, such as Markov logic [Richardson
and Domingos, 2006], probabilistic Horn clause logic [Poole,
1993], and ProbLog [Kimmig et al., 2010], that use logical
languages to specify, and sometimes reason, with probabil-
ity distributions. Probabilistic logics are based on first-order
logic, and they share the advantage of first-order logic in com-
parison to propositional logic in that they can be looked upon
as more expressive knowledge-representation languages with
considerable modelling power, which for probabilistic logics
is extended to areas where uncertainty is encountered.

However, despite their generality, all of these languages
are based on different semantic principles. Some of the prin-
ciples, while taken for granted, should actually be considered
as part of the design choices. When different choices would
have been made, a different probabilistic logic would have
emerged because of the close interaction between the logical
aspects and probabilistic aspects of a probabilistic logic.

In the research described in the present paper, we introduce
the theoretical foundation of a whole class of probabilistic
logics, starting from a very general and unrestrictive proba-
bilistic logic, the above-mentioned ProbLog, and show that it
is possible to obtain a new, but related, probabilistic logic by
changing the way probabilistic evidence is combined. We do
this by redesigning the probabilistic and logical basis of the

probabilistic logic hand in hand such that the resulting logic
supports this double, logical and probabilistic, view. The re-
sulting class of probabilistic logics has the advantage that it
can be used to gear a logic to the problem at hand.

In the next section, we first review the basics of ProbLog,
which is followed by the development of the main methods
used in generalising probabilistic Boolean interaction, and,
finally, default logic is briefly discussed. We will use prob-
abilistic Boolean interaction as a sound and generic, alge-
braic way to combine uncertain evidence, whereas default
logic will be used as our language to implement the interac-
tion operators, again reflecting this double perspective on the
probabilistic logic. The new probabilistic logical framework
is described in Section 3 and compared to other approaches
in Section 4. The achievements of this research are reflected
upon in Section 5.

2 Preliminaries

In this section, probabilistic logic and a method for combin-
ing probabilistic evidence is described. We also briefly review
concepts from default logic.

2.1 Probabilistic Logic: Syntax and Semantics

There are many different proposals in the scientific literature
for probabilistic logics. In this paper we focus on the class
of logics where probabilistic reasoning and logical reason-
ing go hand in hand. ProbLog is a typical example of such a
language [Kimmig et al., 2010]. ProbLog was specifically de-
signed as a basic language to which other probabilistic logical
languages can be compiled [De Raedt et al., 2008]; thus, the
results from this paper apply to a whole range of languages.

It is assumed that the reader is familiar with logic program-
ming terminology, where a program consists of Horn clauses
of the form

B ← A1, . . . , An.
where B, Ai are atoms of the form p(t1, . . . , tm), with tk
terms. If n = 0, then the Horn clause is called a fact, if B
is ⊥ (false), then the clause is called a query; otherwise, the
clause is called a rule.

The ProbLog language extends logic programming by al-
lowing that probabilities are attached to facts, then called la-
belled facts. Let F denote the set of labelled facts, then each
element of F has the form

p :: f.

912

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

also abbreviated to pf , where pf = P (f) ∈ [0, 1] has the
meaning of a probability, and f conforms to the syntax of an
atom. The meaning of an atom in terms of probability theory
is that of a set of random variables. For example,

0.4 :: parent(X).

specifies the collection of random variables parent(X), for
each ground instance of parent(X), obtained by applying
substitutions Θ to parent(X). For example, parent(X)θ =
parent(john) with θ = {john/X}, where θ ∈ Θ. The result-
ing ground atoms are called logical facts.

In addition to labelled facts, a ProbLog program consists of
rules, constituting the background knowledge B of the pro-
gram. Now, let T = F ∪ B be a ProbLog program and let
Θf be the set of all possible substitutions associated with the
logical fact f . Then, LT is defined as the subset-maximal set
of logical facts that can be added to B applying the set of
substitutions Θf to the fact f , for each f ∈ F . The ProbLog
program then defines a joint probability distribution on the
logical facts LT . Let L ⊆ LT , then:

PT (L) =
∏
fθ∈L

pf
∏

f ′θ′∈LT \L
(1− pf ′) .

Let q now be any query to the ProbLog program, then it
holds that

PT (q) =
∑

L⊆LT

P (q | L)PT (L), (1)

where

P (q | L) =
{

1 if ∃θ : B ∪ L � qθ
0 otherwise

and ‘�’ indicates logical entailment. Each L with P (q | L) =
1 is called an explanation of q.

The semantics of ProbLog is called the distribution seman-
tics; it has been borrowed from PRISM [Sato, 1995]. Basi-
cally, in the distribution semantics all facts are assumed to be
mutually independent. However, this does not imply that it
is impossible to encode probabilistic dependences: all depen-
dences are defined at the logical level. This allows defining
any joint probability distribution. The distribution semantics
also has particular consequences for obtaining probabilistic
interactions between facts, as illustrated by the following ex-
ample.

Example 1. Consider the following (trivial) ProbLog pro-
gram T that represents some causal, medical knowledge:

0.7 :: flu.
0.2 :: pneumonia.

fever← flu.
fever← pneumonia.

In this program flu and pneumonia are two independent ran-
dom variables according to the distribution semantics. We
now wish to compute the probability PT (fever). Note that
fever can be explained from either flu, pneumonia, or both

flu and pneumonia. Thus, according to Equation (1) we get:

PT (fever) = P (flu)P (pneumonia)

+ P (flu)(1− P (pneumonia))

+ (1− P (flu))P (pneumonia)

= 0.7 · 0.2 + 0.3 · 0.2 + 0.7 · 0.8
= 0.14 + 0.06 + 0.56

= 0.76

As is well known, this probabilistic result is identical to what
would have been obtained by one of the most popular ways to
model the interaction of (conditionally) independent events:
the so-called noisy-OR [Pearl, 1988]. With the noisy-OR one
models an uncertain, disjunctive interaction between events.

As the noisy-OR is based on logical disjunction, just one of
the 16 binary Boolean operators, one can imagine that there
might be other, equally sound, ways to combine probabilis-
tic evidence. However, in order to be able to combine such
evidence, one needs an algebraic method to combine such
information. A general, algebraic way to combine probabilis-
tic information is available from basic probability theory al-
though it is rarely used to model Boolean interaction. In the
following, we briefly review the necessary basics from prob-
ability theory, with convolution as a special case, and then
investigate how ideas from probabilistic logic, Boolean in-
teraction and default logic can be merged to obtain a more
expressive probabilistic logic, which we call probabilistic in-
teraction logic, or ProbIL for short.

2.2 Probabilistic Boolean Interaction

In the following, a probability mass function of a random
variable X is referred to by fX ; P denotes the associated
probability distribution. A classical result from probability
theory that is useful when studying sums of variables is the
following well-known theorem (cf. [Grimmett and Stirzaker,
2001]).

Theorem 1. Let f be a joint probability mass function of the
random variables X and Y , such that X + Y = z. Then it
holds that P (X + Y = z) = fX+Y (z) =

∑
x f(x, z − x).

Proof. See [Grimmett and Stirzaker, 2001].

If X and Y are independent, then, in addition, the follow-
ing corollary holds.

Corollary 1. Let X and Y be two independent random vari-
ables, then it holds that

P (X + Y = z) = fX+Y (z)

=
∑
x

P (X = x)P (Y = z − x)

=
∑
x

fX(x)fY (z − x) (2)

The probability mass function fX+Y is in that case called
the convolution of fX and fY , and it is commonly denoted as
fX+Y = fX ∗fY . The convolution theorem is very useful, as
sums of independent random variables occur very frequently

913

in probability theory and statistics. It can also be applied re-
cursively, i.e.,

fX1+···+Xn = fX1 ∗ · · · ∗ fXn

as follows from the recursive application of Equation (2).
Theorem 1 does not only hold for the addition of two ran-

dom variables, but also for Boolean functions of random vari-
ables. However, in contrast to the field of real numbers where
a value of a random variable Y is uniquely determined by a
real number x and z through Y = z − x, in Boolean algebra
values of Boolean variables only constrain the values of other
Boolean variables. These constraints may yield a set of val-
ues, rather than a single value, which is still compatible with
the theorem. In the following, we use the notation b(i, J) = q
for such constraints, where the Boolean values i and q con-
strain J to particular values. For example, for (i ∨ J) = q,
where i, q stand for I = 1 (I has the value ‘true’) and Q = 1
(Q has the value ‘true’), it holds that J ∈ {0, 1}. Thus,
f(i, (i ∨ J) = q) is an abbreviation for f(i, j) + f(i,¬j).
The theorem can then be re-expressed as follows.

Theorem 2. Let f be a joint probability mass function of
the random variables I and J such that b(I, J) = q, with b
a Boolean function. Then, it holds that P (b(I, J) = q) =
fb(I,J)(q) =

∑
i f(i, b(i, J) = q).

Proof. The (I, J) space defined by b(I, J) = q can be de-
composed as follows:

⋃
i{I = i} ∩ {J = j | b(i, j) = q},

where the expression b(i, j) = q should be interpreted as a
logical constraint on the Boolean values of the variable J .
Since the individual sets {I = i} ∩ {J = j | b(i, j) = q} are
mutually exclusive, the result follows.

The following corollary for convolution is obtained if I and
J are independent.

Corollary 2. Let f be a joint probability mass function of
independent random, Boolean variables I and J and let b be
a Boolean function defined on I and J , then it holds that

P (b(I, J) = q) =
∑
i

fI(i)P (b(i, J) = q) .

Theorem 2 now appears to be the key insight to generalise
ProbLog.

Example 2. Reconsider Example 1, and the Boolean relation
L∨P = F , where L stands for ‘flu,’ P for ‘pneumonia’, and
F for ‘fever’. We use the same probability distributions as
in Example 1: P (l) = 0.7 and P (p) = 0.2. By applying
Theorem 2 the following results:

P (L ∨ P = f)

=
∑
l

fl(l)P (l ∨ P = f)

= fL(l) (fP (p) + fP (¬p)) + fL(¬l)fP (p)
= fL(l)fP (p) + fL(l)fP (¬p) + fL(¬l)fP (p)
= 0.7 · 0.2 + 0.7 · 0.8 + 0.3 · 0.2 = 0.76

where the term fP (p) + fP (¬p) results from the logical con-
straint that l ∨ P = f , i.e., P ∈ {0, 1}.

Thus, the example demonstrates that the noisy-OR can be
described quite naturally by convolution. See [Lucas and
Hommersom, 2010] for details.

The correspondence between the two approaches is as fol-
lows. The Boolean function b corresponds to the determin-
istic probability distribution P (q | L) of Equation (1). As
P (q | L) is defined in terms of logical entailment of qθ
from B ∪ L, the question addressed in this paper is whether
there are ways to replace logical entailment by a reasoning
method that incorporates probabilistic Boolean interaction as
a method to express interaction between heads of rules. Since
Boolean interaction can be looked upon as an inference rule, a
natural way to extend ProbLog is by replacing standard logic
by default logic.

2.3 Default Logic

In default logic [Reiter, 1980] one adds special inference
rules, called defaults, to ordinary first-order predicate logic.
The defaults have the following form:

prerequisite : justifications
consequent

where ‘prerequisite’ is a condition that, if it is true, then ‘con-
sequent’ can be derived, however, only when the resulting
theory together with the assumptions described by the ‘jus-
tifications’ is consistent. The resulting theory is denoted as
T = (D,W), where in this paper W stands for a set of facts
and rules in Horn-clause logic as in ProbLog, and D are de-
faults. Inference in default logic is done by computing the
extensions of the theory, using a fixed point operator. We will
write (D,W) |∼ϕ if ϕ ∈ E, where E is a default extension
of (D,W).

The next section will develop the probabilistic interaction
logic, ProbIL, by using defaults to represent Boolean interac-
tion, which, when combined with probabilities yields proba-
bilistic Boolean interaction as developed in Section 2.2.

3 Probabilistic Interaction Logic

3.1 General Idea

As Example 1 illustrates, probabilistic languages as ProbLog
implicitly combine probabilistic evidence using logical dis-
junction, which corresponds to the noisy-OR operator. This
choice gives rise to a particular probabilistic behaviour, that
may not always be justified. The resulting probability when
using the noisy-OR is always larger than its components,
i.e., the probabilistic behaviour is monotonically increasing:
pq + p(1 − q) + (1 − p)q ≥ p, q. Thus, it is not possible to
model that particular events, when taken together, cancel each
other out. In contrast, non-monotonic logics such as default
logic can be used to implement such reasoning.

The general idea of Probabilistic Interaction Logic (Pro-
bIL) is to replace the background theory by a default logic
theory. This logic has the same benefits as default logic,
namely that we can specify problem-dependent default be-
haviour without sacrificing ordinary logical deduction. In the
context of ProbIL, defaults model valid interactions depen-
dent of the generic problem-solving method that needs to be
expressed or of the actual problem at hand.

914

Formally, the probability P (q | L) is adapted as follows.
We assume we have a background theory consisting of a set
of defaults D and a set of standard logical rules B. Then we
have:

P (q | L) =
{

1 if ∃θ : (D,B ∪ L) |∼ qθ
0 otherwise

i.e., the monotonic logical entailment |= has been replaced by
the default logic entailment |∼ .

Example 3. The popular example from non-monotonic log-
ics “birds typically fly” is modelled by the default set D ={
Bird(x) : Flies(x)

Flies(x)

}
and we add the standard logic rule ex-

pressing that Penguins do not fly, i.e., B = {Penguin(x) →
¬Flies(x)}. Further, we might know that in a pet store 30% of
the animals are birds, i.e., 0.3 :: Bird(x). To compute whether
Tweety (T) flies, we compute, P (Flies(T)) = P (Flies(T) |
Bird(T))P (Bird(T)) = 0.3.

This has the same representational benefit as default logic
in comparison to standard logic, i.e., the example could also
be formalised by the ProbLog rule:

Bird(x) ∧ ¬Penguin(x)→ Flies(x)

However, if, as in the example, we do not know whether
Tweety flies and we do not have a distribution for Tweety be-
ing a penguin, then P (Flies(T)) = 0. This illustrates the in-
terplay between non-monotonic and probabilistic reasoning,
which is not available in many existing probabilistic logics.

In the following we use this mechanism to study types of
interactions that can be modelled and ways to represent the
resulting probability mass explicitly by using probabilistic
Boolean interaction, and by a convolution operator in case
of independence.

3.2 Boolean Interactions

Consider the following ProbLog clauses: {a← c, a← e}. In
order to model the interaction between the probabilistic evi-
dence contributing to the probability of a, we need to spec-
ify a combination function for these clauses, i.e., we wish
to interpret these clauses as a ← b(c, e), with b a Boolean
function. As we have seen, in the case of ProbLog, b(c, e) is
always equal to c ∨ e. Default logic, as an expressive logical
formalism, is used here to reason about these Boolean inter-
actions. The following proposition expresses that all possible
interpretations of Boolean interactions can indeed be mod-
elled in default logic.

Proposition 1. For all Boolean functions b and a set of atoms
H,B1, . . . , Bn there is a default logic theory D, which does
not contain b, such that:

∃θ : (D,B ∪ L) |∼ qθ

iff
∃θ : B ∪ L ∪ {H ← b(B1, . . . , Bn)} |= qθ

To illustrate this, we list a number of common binary
Boolean functions in Figure 1 with their associated default
logic theory. Hence, for a given set of interactions, we may

Name Default rules D Choices for L
false ∅ ∅

true
{�
H

}
℘({B1, B2})

AND
{
B1, B2

H

}
{{B1, B2}}

OR
{
B1

H
,
B2

H

}
℘({B1, B2}) \ {∅}

EQ
{
B1, B2

H
,
: ¬B1,¬B2

H

}
{∅, {B1, B2}}

XOR
{
B1 : ¬B2

H
,
B2 : ¬B1

H

}
{{B1}, {B2}}

Figure 1: Representation of the binary commutative and
associative Boolean functions using default logic for rule
R : H ← b(B1, B2) such that (D,L) |∼H iff {R} ∪ L |=
b(B1, B2). In this, ℘(L) denotes the powerset of L. Other,
less common Boolean operators can be defined similarly.

replace the relevant rules by the corresponding theory where
the interactions are modelled by default rules.

Of course, the converse of Proposition 1 also holds: exten-
sions of a default theory can be characterised using a Boolean
function. In the following, we assume that we have a Boolean
function to model the interaction.

Example 4. People having headache often use over-the-
counter pain medication to obtain pain relief (r). However,
scientific evidence indicates that headache can actually be
triggered by the overuse of common pain killers. Suppose we
have two pain killers k1 and k2 which in combination are in-
effective against headache. Also assume that pain killer k1
thins the blood (t). Finally assume we have two probabilis-
tic facts d1 and d2 that model the probabilistic decision of
whether or not to take k1 and k2. We can formalise this using
the following ProbLog theory:

{ p1 :: d1 p2 :: d2
r ← k1 k1 ← d1
r ← k2 k2 ← d2

t← k1 }

As k1 and k2 undermine each other effect on r, we would
like to include an XOR interaction function for r. Thus, the
probabilistic rules should be interpreted as the default theory:

D =

{
k1 : ¬k2

r
,
k2 : ¬k1

r

}

together with a purely logical theory:

B = {t← k1, k1 ← d1, k2 ← d2}.

We are interested in hypotheses L ⊆ {d1, d2} such that:

(D,B ∪ L) |∼Q

with Q ⊆ {r, t}. For r, the only explanations are {d1} and
{d2}, but not {d1, d2}. For t, on the other hand, the explana-
tions are {d1} and {d1, d2}. Hence, the only common expla-
nation for r and t is {d1}.

915

3.3 Probabilistic Boolean Interaction

Default logic provides a reasoning mechanism for Boolean
interactions. In this section, we explore the complementary
probabilistic perspective, by generalising results presented in
Section 2.2. As mentioned, Theorem 2 can be used as a basis
for probabilistic interaction logic.

Theorem 3. Let Q be an atom that appears in the theory T
by a single rule:

Q← b(I, J).

For the probability mass function fQ of Q holds:

fQ(q) =
∑
i

f(i, b(i, J) = q) .

Proof.

fQ(q) =
∑

L⊆LT

P (q | L)PT (L)

=
∑

L⊆LT

P (b(I, J) = q | L)PT (L)

=
∑

L⊆LT

∑
i

P (i, b(i, J) = q | L)PT (L)

=
∑
i

f(i, b(i, J) = q)

Example 5. Reconsider Example 4. As the explanations of r
are {d1} and {d2}, we have:

P (r) = p1(1− p2) + (1− p1)p2 = p1 + p2 − 2p1p2

Using the standard semantics of ProbLog, note that
f(k1,¬k2) = P (k1 ∧ ¬k2) = p1(1− p2) and f(¬k1, k2) =
(1− p1)p2. By applying Theorem 3, we obtain

P (r) = f(r) = P (XOR(k1, k2) = r)

= f(k1,¬k2) + f(¬k1, k2)
= p1(1− p2) + (1− p1)p2

and the results correspond. However, if we had used the stan-
dard (noisy-OR) semantics of ProbLog, we would have ob-
tained P ∗(r) = P (OR(k1, k2) = r) = p1p2 + (1− p1)p2 +
p1(1− p2), which is larger than or equal to P (r).

An assumption that is often made in probabilistic logics
(e.g., [Poole, 1993]), is that explanations are mutually exclu-
sive, i.e., P (Li ∨ Lj) = P (Li) + P (Lj), with Li and Lj

explanations. Without this assumption, the probability of the
disjunction is computed by finding an equivalent disjunction
for Li∨Lj where the disjuncts are mutually exclusive (called
the disjoint-sum problem). Similarly, if we assume that bod-
ies of a head, say Bi and Bj , are independent of each other,
no disjoint-sum problem has to be solved as then it holds that
P (Bi ∨ Bj) = P (Bi) + P (Bj) − P (Bi)P (Bj). This can
be seen as a somewhat ‘weaker’ requirement, as this does not
restrict the structure of logical theories, but only the probabil-
ity distribution that is generated. In the case of independent
bodies for a query, convolution can be exploited.

Corollary 3. Let Q be an atom that appears in theory T as a
single rule:

Q← b(I, J)

where I and J independent. Then the probability mass func-
tion fQ of Q:

fQ(q) =
∑
i

fI(i)P (b(i, J) = q) .

Example 6. Reconsider again Example 4. It is not difficult
to see that f(k1) = p1 and f(k2) = p2. So, we may use the
convolution as follows:

P (r) =
∑
k1

f(k1)P (XOR(k1, k2) = r)

= f(k1)f(¬k2) + f(¬k1)f(k2)
= p1(1− p2) + (1− p1)p2

which yields again the same result as before. However, in this
case the computation of f(k1) is independent of f(k2).

3.4 Representation

In case the independence assumption does not hold, a
disjoint-sum problem has to be solved, e.g., using binary de-
cision diagrams (BDDs) [Kimmig et al., 2010]. However,
it cannot be determined beforehand when this problem has to
be solved, so a representation of such independence can avoid
the overhead of BDDs and improve the inference in practice.

Syntactically, we introduce a labelling ri of rules, and use
this to denote a Boolean interaction between rules with the
same head. For example:

{r1 : a← c, r2 : a← e, b(r1, r2)}

In this specification b(r1, r2) expresses that

f(a) = f(c) b f(e)

where b denotes convolution using Boolean operator b.
This operator is useful for algebraic manipulation of models
with complex interactions between formulae, as the algebraic
properties of the Boolean operator b carry over to the b op-
erator. Moreover, it directly simplifies inference as it prevents
the overhead of solving the disjoint-sum problem for a. Fi-
nally, the representation is generic for both discrete models,
continuous models, and mixtures of these [Lucas and Hom-
mersom, 2010], so the results generalise to probabilistic log-
ical models with continuous distributions, such as proposed
in [Gutmann et al., 2010].

4 Related Work

It is well-known that default logic can be embedded in a
logic programming language with negation as failure [Kakas,
1994]. A probabilistic variant of such a logic programming
language with such negations is ICL [Poole, 1997]. An-
other approach is the language of P-log [Baral et al., 2009],
which extends the Answer Set Programming (ASP) frame-
work with probabilistic facts. Both approach are closely re-
lated to ProbIL in the sense that they both are probabilistic
non-monotonic logics. The goal of this paper, however, is

916

complementary as we are not focused on non-monotonic the-
ories per se, but rather, theories with different types of inter-
actions between bodies. In fact, it holds for both ICL and
P-log that the interactions between bodies follow a noisy-OR
interaction. In contrast, this paper has showed that interac-
tions can be faithfully represented in a non-monotonic logic
and can sometimes be decomposed using a type of convo-
lution operator. ProbIL is used as a basic language to give
insight to the former goal as it very intuitively can represent
causes that cancel each other out. From a more practical point
of view, other systems could be used to actually represent and
compute these probabilities.

5 Conclusions

In this paper, we proposed a new mechanism for modelling
interactions in probabilistic logics. As suggested in [Poole,
1990], abduction can be seen as formalism for explaining ob-
servations, whereas default logic is used to make predictions.
While languages such as ProbLog use a non-monotonic ap-
proach (abduction) for explaining a possible query, predic-
tions are completely monotonic. We have used default rea-
soning in this context of prediction as a method for modelling
interactions between probabilistic facts.

Default reasoning is difficult in general; in its full gen-
erality, default abduction is intractable [Eiter et al., 1997].
Nonetheless, algorithms for solving this problem for proposi-
tional default theories have been developed that use efficient
quantified Boolean formula solvers [Tompits, 2003]. More-
over, we have shown that for many classes of problems, the
probabilistic interactions can be decomposed and effectively
represented by a convolution operator. This may significantly
improve the computational complexity of reasoning in a way
similar to the use of causal independence models in Bayesian
networks [Zhang and Poole, 1996]. Although we have not
presented a practical implementation of ProbIL in this paper
— ProbIL is rather acting as a general language for represent-
ing interactions — it could be implemented using some of
the existing approaches in probabilistic logics based on logic
programming. Actually developing such implementations is
future research.

Important in this work is that we have incorporated differ-
ent methods of reasoning into a flexible probabilistic logic,
while still maintaining the overall design aim of providing
logical and probabilistic reasoning hand in hand. We believe
that this can be of help for modelling and reasoning about a
wide range of actual problems.

Acknowledgments

Arjen Hommersom was supported by VENI Grant
639.021.918 from The Netherlands Organization of Scien-
tific Research. We thank the reviewers for their constructive
comments which have significantly improved this paper.

References

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nel-
son Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9:57–144,
2009.

[De Raedt et al., 2008] L. De Raedt et al. Towards digesting
the alphabet-soup of statistical relational learning. In NIPS
2008 Workshop on Probabilistic Programming, 2008.

[Eiter et al., 1997] T. Eiter, G. Gottlob, and Leone N. Se-
mantics and complexity of abduction from default theo-
ries. Artificial Intelligence, 90(1-2):177–223, 1997.

[Grimmett and Stirzaker, 2001] G. Grimmett and D. Stirza-
ker. Probability and Random Processes. Oxford Univer-
sity Press, Oxford, 2001.

[Gutmann et al., 2010] B. Gutmann, M. Jaeger, and
L. De Raedt. Extending problog with continuous
distributions. In Proc ILP2010, 2010.

[Kakas, 1994] A. Kakas. Default reasoning via negation as
failure. In G. Lakemeyer and B. Nebel, editors, Founda-
tions of Knowledge Representation and Reasoning, vol-
ume 810 of LNCS, pages 160–178. Springer Berlin / Hei-
delberg, 1994.

[Kimmig et al., 2010] A. Kimmig, B. Demoen, L. De Raedt,
V. Santos Costa, and R. Rocha. On the implementation
of the probabilistic logic programming language ProbLog.
Theory and Practice of Logic Programming, 2010.

[Lucas and Hommersom, 2010] P.J.F. Lucas and A.J. Hom-
mersom. Modelling the interactions between discrete and
continuous causal factors in Bayesian networks. In Proc
PGM-2010, pages 185–192, 2010.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Inteligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[Poole, 1990] D. Poole. A methodology for using a default
and abductive reasoning system. International Journal of
Intelligent Systems, 5(5):521–548, 1990.

[Poole, 1993] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64:81–129,
1993.

[Poole, 1997] D. Poole. The independent choice logic for
modelling multiple agents under uncertainty. Artificial In-
telligence, 94(1-2):7–56, 1997.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Arti-
ficial Intelligence, 13(1-2):81–132, 1980.

[Richardson and Domingos, 2006] M. Richardson and
P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

[Sato, 1995] T. Sato. A statistical learning method for logic
programs with distribution semantics. In L. Sterling, ed-
itor, Int Conf Logic Programming, pages 715–729. MIT
Press, 1995.

[Tompits, 2003] H. Tompits. Expressing default abduction
problems as quantified Boolean formulas. AI Commun.,
16:89–105, June 2003.

[Zhang and Poole, 1996] N.L. Zhang and D. Poole. Exploit-
ing causal independence in Bayesian network inference.
JAIR, 5:301–328, 1996.

917

