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Abstract

The theory of belief networks offers a relatively new approach for dealing with uncertain
information in knowledge-based (expert) systems. In contrast with the heuristic tech-
niques for reasoning with uncertainty employed in many rule-based expert systems, the
theory of belief networks is mathematically sound, based on techniques from probability
theory. It therefore seems attractive to convert existing rule-based expert systems into
belief networks. In this article, we discuss the design of a belief network reformulation
of the diagnostic rule-based expert system HEPAR. For the purpose of this experiment,
we have studied several typical pieces of medical knowledge represented in the HEPAR
system. It turned out that, due to the differences in the type of knowledge represented
and in the formalism used to represent uncertainty, much of the medical knowledge re-
quired for building the belief network concerned could not be extracted from HEPAR. As
a consequence, significant additional knowledge acquisition was required. However, the
objects and attributes defined in the HEPAR system, as well as the conditions in produc-
tion rules mentioning these objects and attributes were useful for guiding the selection
of the statistical variables for building the belief network. The mapping of objects and
attributes in HEPAR to statistical variables is discussed in detail.

Keywords & Phrases : medical expert systems, belief networks, causal graphs, decision
support systems.

1 Introduction

In heuristic, diagnostic expert systems, knowledge from a given domain is typically represented
in the form of production rules, or rules for short. To express uncertainty in the domain, each
conclusion of a rule is associated with a measure of confidence in its correctness. The exact
meaning of such non-probabilistic measures of uncertainty usually is not clearly defined.
An example of a method for handling uncertainty frequently applied in rule-based expert
systems is the certainty-factor model developed by E.H. Shortliffe and B.G. Buchanan for the
(E)MYCIN system [24, 1]. Certainty factors can be given a probabilistic interpretation, but

∗Published in: Medical Informatics, 18(3): 219–241, 1993 (also: 1994 Yearbook of Medical Informatics).

1



2 OVERVIEW OF THE HEPAR SYSTEM 2

it turns out that in doing so usually an inconsistent specification of a probability distribution
results [5, 3].

HEPAR is such a rule-based expert system; it aims at supporting the clinician in the initial
assessment of the patient with a disorder of the liver or biliary tract [14]. The HEPAR system
has been designed in such a way that it is capable of generating diagnostic explanations,
based on clinical knowledge, with a similar amount of detail as employed by the clinician.
The system incorporates the certainty-factor model to deal with uncertain medical knowledge.
Although its diagnostic performance has been shown to be quite reasonable [11, 13], one of
the problems with the HEPAR system is that its conclusions may be difficult to interpret,
due to the unclear meaning of certainty factors.

In contrast with the heuristic models for reasoning with uncertainty, such as the certainty-
factor model, the recent theory of belief networks is based on mathematically sound tech-
niques, derived straight from probability theory [20]. A belief network permits the qualitative
representation of dependencies and independencies among statistical variables. Since a causal
relationship between two variables implies their statistical dependence, a belief network can
be used to represent causal medical knowledge. The theory of belief networks then permits the
use of this causal knowledge for diagnostic problem-solving. Such a causal model of a medical
domain may be more easy to comprehend by medical students and unexperienced clinicians
than a similar diagnostic rule-based system. Typically, in a rule-based expert system the
heuristic knowledge encoded is too far removed from the underlying (patho)physiological pro-
cesses to be understood by the non-expert physician. Furthermore, a belief network designed
for diagnostic problem-solving can be applied to predict findings associated with (groups of)
disorders. Although, in principle, the production rule formalism allows for the implementa-
tion of causal reasoning models, such a rule-based system cannot be used for diagnosis in a
straightforward way. The sound mathematical basis and the expressiveness of the formal-
ism of belief networks make it attractive to consider converting an existing rule-based expert
system into a belief network.

In this article, we investigate the potentials of converting a diagnostic rule-based expert
system into a belief network. This study is based on an actual experiment in which a repre-
sentative part of the HEPAR system was converted into a belief network. Similar work has
been carried out in the probabilistic reformulation of the INTERNIST-1/QMR knowledge
base [25, 17]. However, the knowledge-representation and inference techniques used in this
expert system differ considerably from those used in rule-based expert systems. We start
with an introduction to the field of hepatology, and we will subsequently review the most im-
portant characteristics of the HEPAR system. The steps taken in converting the rule-based
representation formalism applied in the HEPAR system into a belief network representation
are discussed in Section 3. We conclude by summarizing the potentials and limitations of our
approach to knowledge-base reformulation.

2 Overview of the HEPAR system

2.1 Clinical diagnosis in hepatology

Hepatology is a subspeciality of internal medicine which concerns the diagnosis and manage-
ment of patients with disorders of the liver and biliary tract. Diagnosis of such disorders on
purely clinical grounds is a difficult task, requiring much experience, as has been shown in
several studies [15, 22, 4, 32, 33]. Clinicians with little experience in the field of hepatology
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have shown to produce a correct specific diagnosis in patients with jaundice in less than 45%
of the cases [31].

The main problems in the diagnosis of disorders of the liver and biliary tract are [34]:

• to distinguish between disorders of the liver (hepatocellular disorders) and of the biliary
tract (biliary obstructive disorders),

• to differentiate between acute and chronic disorders, and

• to recognize whether a disorder is benign or malignant in nature.

These different disease groups require different diagnostic procedures, treatment plans and
prognostic assessments. Especially the distinction between biliary obstructive and hepato-
cellular disorders is important, since the former typically require surgical treatment, whereas
diseases from the latter group are managed conservatively. Both biliary obstructive and hep-
atocellular disorders may give rise to an impaired secretion of bile into the bile ducts, called
cholestasis. This manifests itself by jaundice through the accumulation in the serum of the
biliary substance bilirubin.

A large number of diagnostic methods is available to analyse patients with disorders of
the liver and biliary tract. These include serological tests for several forms of viral hepatitis
and autoimmune liver disease, and ultrasound imaging of the liver and biliary tract, which is
of major importance in the diagnosis of biliary obstruction. In those cases where insufficient
information is obtained from ultrasound, invasive techniques, such as percutaneous transhep-
atic cholangiography (PTC) and endoscopic retrograde cholangiopancreatography (ERCP),
can offer help. In addition, liver biopsy can be employed in order to determine the aetiology
and severity of chronic liver disease.

Of overriding importance in the diagnosis of hepatobiliary disease, however, is a detailed
history and thorough physical examination. Together with a small number of routine labora-
tory tests, they frequently suffice for the formulation of a differential diagnosis. Supplemen-
tary diagnostic tests as mentioned above need then only be performed in selected cases, which
minimizes not only expenses, but also diagnostic risk, since PTC, ERCP and liver biopsy are
each associated with considerable morbidity and even a small mortality rate.

2.2 HEPAR, a rule-based system for the diagnosis of hepatobiliary disease

As in many clinical specialities, in hepatology establishing an early working diagnosis is im-
portant. Firstly, because treatment must often be initiated as soon as possible. Secondly,
because it determines which diagnostic tests are selected for further assessment of the pa-
tient. The application of simple data from the medical history, physical examination and
laboratory tests has therefore been taken as the point of departure for the development of
the HEPAR expert system. Using merely these data, the system is capable of providing an
initial assessment of the patient with a disorder of the liver or biliary tract, determining:

• whether the patient is suffering from an acute, subacute or chronic disorder,

• whether the disorder is hepatocellular or biliary obstructive in nature, and

• whether benign or malignant features are present.
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patient

age
sex
complaints
signs

...

...
type disorder
nature disorder
diagnosis

complab

duration
pain

location
character

...

labresults

PTT
PTT-K

...

u.s. liver

size
density

...

radiology

x-ray abdomen
x-ray thorax
scintiscan

haematology

ESR
HB
...

biochemistry

γ-GT
ASAT

...

serology

hepatitis A
hepatitis B

...

u.s. bileducts

intrahepatic
extrahepatic

other u.s.

ascites
gallbladder

...

complab = complaints, clinical signs, lab abnormalities
u.s. = ultrasound

Figure 1: The object tree of the HEPAR system.

When additional information derived from some more specific, but generally available tests like
ultrasound is included, the HEPAR system is also capable of producing a differential diagnosis
consisting of a subset of possible diagnoses out of a set of some 80 disorders, ordered by the
amount of evidence for each diagnosis. No use is made of data obtained by PTC, ERCP and
liver biopsy. Thus closely following the clinical approach to the hepatological patient, the
HEPAR system may be a suitable tool to assist the doctor in the initial assessment of the
patient.

The knowledge base of the HEPAR system consists of two separate components:

• a collection of object definitions, structured as a tree, where each object definition
describes an entity from the field of hepatology by listing a collection of its features,
and

• a rule base, containing the problem-solving knowledge concerning diagnosis in hepatol-
ogy.

The features of an object are usually called attributes. For example, in the HEPAR object tree,
which is depicted in Figure 1, the attributes ‘age’, ‘sex’, ‘complaints’, ‘signs’ and ‘diagnosis’
of the object named ‘patient’ describe identically named features of a patient. The object
tree specifies for each attribute:
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if

lessthan(biochemistry,AP,60) and

greaterthan(biochemistry,gamma-GT,100) and

between(biochemistry,ASAT,[50,200]) and

between(biochemistry,ALAT,[50,200]) and

lessequal(biochemistry,total_bili,17)

then

conclude(patient,type-disorder,biliary_obstructive)

with CF = 0.25

conclude(patient,type-disorder,hepatocellular)

with CF = 0.60

fi

Figure 2: Example of a production rule from the HEPAR system.

• a value type (singlevalued, multivalued, yes/no),

• a domain (integer, real, boolean, textvalue), and

• a trace-class.

A singlevalued attribute can only take one value with absolute certainty at a time. The
domain of singlevalued attributes may be a real or integer interval, boolean or textvalue (a
set of strings). Contrary to singlevalued attributes, multivalued attributes can take more than
one (text)value at the same time. For instance, a patient can be of only one age (singlevalued
attribute), but can suffer from several complaints at the same time (multivalued attribute). A
yes/no attribute is a special singlevalued attribute which can take only one of the two values
‘yes’ and ‘no’.

The trace-class specifies for each attribute whether it should be asked from the user, de-
noted by the keyword askfirst (or initialdata if the attribute should be asked at the beginning
of the consultation), should be inferred from the rule base, in which case it is declared as a
goal, or neither of the two, in which case it is only considered by the inference engine when
required for determining the values of some other attribute. All goal attributes in the system
are contained in the ‘patient’ object. The main goal attributes are:

• the nature of the disorder (benign or malignant),

• the type of the disorder (hepatocellular or biliary obstructive), and

• the final diagnosis.

Furthermore, portal hypertension is a goal attribute, since it is a complication whose presence
is very important to assess in view of the far-reaching consequences for therapy and prognosis.
The goal attribute ‘type of the disorder’ is multivalued. In this way, it is expressed that
hepatocellular and biliary obstructive features are not mutually exclusive alternatives, but
can be present in the patient simultaneously. Similarly, several interrelated diseases may be
present within the same patient, so the attribute ‘diagnosis’ is also multivalued.

The rule base of HEPAR consists of a collection of 533 production rules having 1032
conclusions. An example of a production rule selected from HEPAR is shown in Figure 2.
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This production rule consists of five conditions and two conclusions which are drawn only if
all conditions are satisfied. This depends on given data and derived facts concerning a specific
case. With each conclusion, a certainty factor is associated. A certainty factor expresses on
a scale from −1 to +1 the confidence in the correctness of the conclusion, provided that all
conditions of the rule are satisfied with absolute certainty. Under the given conditions, the
example rule concludes that a hepatocellular disorder is more likely (CF = 0.60) than a biliary
obstructive disorder (CF = 0.25).

Most of the production rules concern data obtained from medical history, physical exami-
nation and routine blood-chemistry. A brief analysis according to the conclusions of the rules
will give an impression of the complexity of the rule base. The duration of complaints, clinical
signs and lab abnormalities (attribute ‘duration’) is deduced in only 3 rules (one for each of
the values acute, subacute and chronic). A total of 58 rules conclude about the nature of the
disorder, with 44 conclusions having malignant and 54 having benign as a value. Conclusions
about the type of the disorder are drawn in 257 rules (249 conclude hepatocellular, 244 biliary
obstructive); of these, 225 are similar to the one shown in Figure 2. About the diagnosis of
the patient 339 conclusions are drawn in 224 rules.

During a consultation, the production rules are applied by the inference engine to derive
values for the goal attributes. The algorithm used is known as top-down inference or backward
chaining. The process of data collection is guided by the course of the inference, except as
far as the initialdata attributes are concerned (see above). Part of the reasoning in the
system concerns the manipulation of the certainty factors to propagate the uncertainty in
problem-solving knowledge to the final conclusions concerning the goal attributes.

The representation of knowledge by means of production rules with object-attribute-value
triples, as well as top-down inference and the certainty-factor model are described in more
detail in [1, 12].

3 Design of the belief network

3.1 Basic notions of belief networks

The formalism of belief networks offers an intuitively appealing approach for expressing in-
exact causal relationships between domain concepts [7, 20]. A belief network consists of two
components [3]:

• A qualitative representation of the variables and relationships between the variables dis-
cerned in the domain, expressed by means of a directed acyclic graph G = (V (G), A(G)),
where V (G) = {V1, V2, . . . , Vn} is a set of vertices, taken as the variables, and A(G) a set
of arcs (Vi, Vj), where Vi, Vj ∈ V (G), taken as the relationships between the variables.

• A quantitative representation of the ‘strengths’ of the relationships between the vari-
ables, expressed by means of assessment functions.

Note that the expressive power of the belief network formalism for representing causal knowl-
edge is restricted by the acyclic nature of the directed graph; cyclic causal influences cannot
be represented in the formalism. More about this restriction will be said in Section 3.3.4.

Each of the variables Vi ∈ V (G) may take one value from the variable’s outcome space.
The presence of an arc (Vi, Vj) in A(G) represents a direct influential or causal relationship
from Vi to Vj ; its absence denotes that the variables Vi and Vj are assumed not to influence
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each other directly. Because of the causal meaning of the arcs, the qualitative representation
of the domain will be called a causal graph in this article.

For each vertex Vi an assessment function, denoted by γVi
, is defined by the conditional

probability distributions P (Vi = vi|cπ(Vi)), where vi denotes an arbitrary value of Vi and cπ(Vi)

a conjunction of arbitrary values for each of the variables in the set π(Vi) of parents of Vi. In
case the set of parents of the vertex Vi is empty, the probability function to be specified is
just the prior probability distribution P (Vi = vi), for each value vi. The assessment functions
together define a probability distribution on the domain.

After a belief network has been specified, it can be used for reasoning about uncertain
information in the domain concerned. For example, one may enter into a medical belief
network information concerning certain symptoms and signs observed in a patient, after
which an updated probability distribution will be computed. The process of computing the
updated probability distribution after entering specific evidence into the belief network is
called evidence propagation.

Currently, there are two frequently applied algorithms for evidence propagation in use
in belief networks. The first, and oldest, scheme originates from J.H. Kim and J. Pearl [7].
This scheme is only applicable in belief networks in which the causal graph has the form
of a singly connected graph, i.e. a directed acyclic graph in which at most one path exists
between any two vertices. The second scheme for evidence propagation originates from the
work of S.L. Lauritzen and D.J. Spiegelhalter [8]. This algorithm is applicable in arbitrary
belief networks. However, several techniques are known for extending the method of Kim
and Pearl to arbitrary belief networks [20]. For an in-depth account of belief networks, the
interested reader is referred to [18, 20]. For an overview of the principles of belief networks,
the reader is referred to [12].

There are now several expert system shells available for building belief networks. For the
experiments described in this article, we used the IDEAL system [27], to which some small
programs for the graphical display and printing of belief networks were added.

3.2 Design considerations

In developing the belief network, the HEPAR system was taken as the point of departure.
However, as we shall see, using the HEPAR system as a source for statistical variables would
result in a belief network consisting of over 300 vertices. We have therefore confined the scope
of the experiment by focussing on three prototypical aspects of the field:

• cholestasis, which is an important pathophysiological concept used in the early assess-
ment of the patient;

• cirrhosis, which is an important concept embodying a large number of chronic disorders
of the liver and biliary tract;

• Wilson’s disease, which is a specific chronic disorder affecting the liver. In this recessively
inherited derangement of copper metabolism, cirrhosis may develop as a consequence
of progressive copper accumulation in the liver; copper deposits in other organs may
cause extrahepatic disease and peripheral cornea pigmentations, called Kayser-Fleischer
rings.

In this paper, we confine ourselves to discussing the last two aspects of the field.
The development of the collection of causal graphs was undertaken in several steps:
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1. The variables, with associated outcome spaces, playing a central role in the domain
were discerned, yielding an initial set of vertices.

2. The possible set of states for each variable was determined.

3. The causal relationships between the various variables were established, resulting in a
set of arcs and several additional intermediate vertices.

After this initial design of the causal graphs, which was based on medical considerations only
and not on considerations with respect to the final implementation, cycles introduced in the
graph were cut, and some vertices were removed or added to simplify probability assessment.
Finally, the causal graph concerning Wilson’s disease was transformed into a belief network
by filling in the assessment functions.

In the following sections, the above-mentioned steps will be discussed one by one.

3.3 Design of the causal graphs

3.3.1 Choice of statistical variables

The object tree of HEPAR served as the point of departure for the choice of the statistical
variables in the design of the belief network. The concept of attribute closely resembles the
concept of variable, and the notion of the domain of an attribute is similar to the notion
of the outcome space of a statistical variable. More precisely, a statistical variable may be
viewed as a singlevalued attribute, because the values in the outcome space of a variable are
mutually exclusive.

A detailed analysis of the HEPAR system revealed that its object tree contains 102 dif-
ferent attributes grouped by 11 objects. Subdivided by value type, there are 30 yes/no,
49 singlevalued and 23 multivalued attributes. Whereas translating yes/no and singlevalued
attributes into statistical variables is straightforward, converting a multivalued attribute re-
quires splitting up its domain into mutually exclusive subsets, thus obtaining a collection of
variables with associated outcome spaces.

As an example of this translation process, consider the multivalued attribute ‘blood count’
which is contained in the object ‘haematology’. Among others, the domain of this attribute
contains the values ‘normal’, ‘lymphocytosis’, ‘leukocytosis’ and ‘leukocytopenia’. In the
translation process, related attribute values were combined as the possible values of a new
statistical variable. To the outcome space of each of these variables we added the special
value ‘normal’, thus obtaining a non-binary variable. In this case, we obtained the statistical
variable ‘leukocyte count’ with outcome space {leukocytosis, normal, leukocytopenia}. At-
tribute values having no direct relationship to any other value were translated into binary
statistical variables. For example, the value ‘lymphocytosis’ was translated into the variable
‘lymphocytosis’ with outcome space {yes, no}.

The number of values in the domain of the multivalued attributes in the HEPAR object
tree varies from 2 (e.g. for the attribute ‘type disorder’) up to 87 for the attribute ‘diagnosis’
(of which 9 not yet concluded in production rules). Most multivalued attributes have domains
in which neither of the values excludes any one of the others. The conversion of such a mul-
tivalued attribute with a domain consisting of n values will thus result in n binary variables.
As a consequence, splitting up the 23 multivalued attributes in HEPAR will yield almost 250
variables. Hence, using only the HEPAR system as a source for variables to be discerned will
already render a belief network consisting of over 300 vertices.
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The theory underlying belief networks does not provide a means for grouping of variables;
consequently, no analogy of the concept of object exists. By converting the object tree into a
set of statistical variables, the structural coherence between closely related concepts provided
in HEPAR is lost; variables with other than causal relations are dispersed over the network.

3.3.2 State assessment of variables

In the previous section, we have shown how the translation of the attributes of HEPAR into
statistical variables was carried out. Now, if V is any statistical variable, we may want to
express probabilistic statements of the form

P (V = v|cπ(V ))

where V is an arbitrary variable and v a value of V , or

P (v1 ≤ V < v2|cπ(V ))

for V a numerical (integer or real) variable. Expressions such as V = v and v1 ≤ V < v2 will
be called states of a variable in this article.

One of the problems in distinguishing states for the statistical variables discerned was that
the theory of belief networks is not capable of dealing with continuous probability distribu-
tions. As a practical solution to representing a continuously distributed variable in a belief
network, the variable is simply made discrete by subdividing its outcome space into a finite
number of intervals, and taking these intervals as states. In case of the HEPAR system, such
a conversion was required for singlevalued attributes with a real or integer domain.

The assessment of variable states was guided by the conditions and conclusions in the
production rules of HEPAR. For non-numerical attributes, the states distinguished for the
associated variables corresponded in most cases to the values enumerated in the associated
outcome space. Most of these values were referred to in the conditions and conclusions of
the rules. Numerical attributes were transformed into discrete statistical variables with a
finite number of interval states, where the assessment of the cut-off points of the intervals
was based on the conditions in which the corresponding attributes appeared. If necessary,
these intervals were further refined by using cut-off points mentioned in the hepatological
literature [16]. Consider for example Figure 2. This rule provides us with one cut-off point
for ‘AP’ (alkaline phosphatase), ‘gamma-GT’ and ‘total bili’ (total bilirubin); two cut-off
points can be derived for ‘ASAT’ and ‘ALAT’ from this rule.

In HEPAR, 20 of the 49 singlevalued attributes have a numerical domain. For 19 of these
singlevalued attributes, from one up to nine cut-off points were distinguished. One attribute
is only used in an arithmetical expression, so no cut-off points could be determined for this
attribute. ‘Age’ was the attribute for which nine different cut-off points were discerned.
Since many disorders are age-specific, it seems inevitable to distinguish so many states for
this feature. In [2] for instance, its range is subdivided in seven categories.

The results of this translation process are summarized in Table 1. So far, the conversion
of the HEPAR system into a belief network did not cause insurmountable problems. Only a
small number of attributes could not be converted into discrete statistical variables without
using information from other sources than the HEPAR system.
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Attributes in HEPAR Derived variables
No. of values

Type No. No. 2 3 4 5 6 7 8 9 10 unknown

yes/no 30 30 30
singlevalued 49

textvalue 29 29 20 5 4
numerical interval 20 20 8 3 2 1 2 2 1 1∗

multivalued 23 > 246 242 4 −∗∗

Table 1: Summary of the results of the conversion of HEPAR attributes into discrete statistical
variables. ∗) No cut-off points could be derived from the HEPAR rule base. ∗∗) In the
current implementation, no domain is specified for the multivalued attribute ‘drug’, nor is
the attribute applied in the rules.

3.3.3 Detecting causal relations between variables

In rule-based systems, attributes are placed into relation with each other by means of pro-
duction rules. In a diagnostic expert system like HEPAR, most of these relations concern
associations between disease manifestations on the one hand and diagnostic conclusions on
the other hand, which are largely heuristic and not causal in nature.

Although the notion of causality employed in belief networks is interpreted somewhat
broadly as any relationship in which one variable influences another, the differences between
heuristic and causal knowledge imply that rules cannot be translated into causal graphs in
a straightforward way. The analysis of the rule base of the HEPAR system was thus guided
by the question of how the associations had to be interpreted in terms of causality. It turned
out that in broad outline three different possibilities can be distinguished:

1. The condition (e.g. age) is viewed as one of the ‘causes’ of the conclusion (e.g. Wilson’s
disease).

2. The condition (e.g. Kayser-Fleischer rings) is viewed as one of the effects of the conclu-
sion (e.g. Wilson’s disease).

3. Both a condition (e.g. Kayser-Fleischer rings) and a conclusion (e.g. chronic duration
of complaints) are viewed as the effects of a common cause (e.g. Wilson’s disease).

In the last case, we see that a variable taking part in a causal relation is actually missing
in the rule concerned. As we shall see in the following, in designing a belief network, taking
a set of production rules as a point of departure will yield an incomplete belief network.
So, it will be necessary to add several intermediate vertices in order to obtain a satisfactory
description of the causal disease mechanisms involved. We have used additional knowledge
from hepatological textbooks, in particular [34], in order to extend the heuristic associations
in the rules to causal relations.

We shall illustrate this process with the help of the HEPAR rule shown in Figure 3. In this
rule, findings from history and physical examination are associated with a conclusion stating
that the patient’s disorder is chronic. An analysis of the relations between the variables
corresponding to the mentioned object-attribute-value triples in terms of causes and effects is
summarized in the following paragraph. Variables occurring in the rule have been indicated
in italic.
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if

greaterthan(patient,time_course,26) or

same(patient,complaint,haematemesis) or

same(patient,signs,xanthomata) or

same(patient,signs,testicular_atrophy) or

same(patient,signs,spider_angiomas) or

same(patient,signs,palmar_erythema) or

same(patient,signs,Kayser_Fleischer_rings) or

same(patient,signs,gynaecomastia) or

same(patient,signs,oesophageal_varices) or

same(patient,signs,caput_medusae) or

same(patient,signs,butterfly_erythema)

then

conclude(complab,duration,chronic) with CF = 1

fi

Figure 3: Heuristic knowledge in the HEPAR system.

The time course of the disorder is a direct result of its acute, subacute or chronic duration.
Two sorts of chronic disorder of the liver are of importance in this respect: cirrhosis and
chronic active hepatitis. The two major complications of cirrhosis are hepatocellular failure
and portal hypertension. Portal hypertension may lead to the development of portasystemic
collaterals such as oesophageal varices and caput medusae (dilated skin veins surrounding
the navel); rupture of an oesophageal varix causes haematemesis (vomiting of blood). The
pathogenesis of testicular atrophy, gynaecomastia, spider angiomas and palmar erythema in
subjects with cirrhosis is not entirely clear, but seems related to abnormal sex hormone
metabolism, among others a raised oestrogen concentration as a consequence of decreased
liver function. (Oestrogens are metabolized largely by the liver.) Kayser-Fleischer rings are
almost pathognomonic for Wilson’s disease, but can also be found in primary biliary cirrhosis.
In both disorders, the liver is usually cirrhotic. Primary biliary cirrhosis causes obstruction
of the small intrahepatic biliary ducts, and since in chronic cholestasis very high plasma lipid
levels can occur, xanthomata (deposits of lipids in the skin) may also appear in this disease.
Chronic active hepatitis, in itself a type of chronic liver disease, is also a likely cause of
cirrhosis. One of the disorders resulting in chronic active hepatitis is autoimmune chronic
hepatitis, which is associated with butterfly erythema.

Part of the knowledge lacking in the production rule analysed above is represented in
other HEPAR rules, namely the rules concerning portal hypertension, Wilson’s disease, pri-
mary biliary cirrhosis and autoimmune chronic hepatitis. When represented as a causal graph
Figure 4 is obtained. As can be seen, all conditions in the example rule from Figure 3, except
the first, correspond to variables directly or indirectly influenced by a variable which also
influences the variable corresponding to the rule’s conclusion. The vertex ‘cirrhosis’ has been
added to enable connecting the conclusion to the conditions 2, 4-6 and 8-10; the vertices la-
belled ‘portal hypertension’, ‘portasystemic collaterals’, ‘liver function’ and ‘oestrogens’ have
been added here to obtain a more natural causal, pathophysiological description in corre-
spondence with that provided in the textbooks. The disease causally related to condition 11
(butterfly erythema) is ‘autoimmune chronic hepatitis’, which has been added to the graph



3 DESIGN OF THE BELIEF NETWORK 12

PALMAR ERYTHEMA

YES
NO

SPIDER ANGIOMAS

YES
NO

TESTICULAR ATROPHY

YES
NO

CAPUT MEDUSAE

YES
NO

HAEMATEMESIS

YES
NO

XANTHOMATA

YES
NO

KAYSER-FLEISCHER RINGS

YES
NO

TIME COURSE

< 12 WEEKS
12 − 26 WEEKS
> 26 WEEKS

BUTTERFLY ERYTHEMA

YES
NO

GYNAECOMASTIA

YES
NO

OESOPHAGEAL VARICES

YES
NO

PLASMA LIPIDS

OESTROGENS

CHOLESTASIS

DURATION

ACUTE
SUBACUTE
CHRONIC

LIVER FUNCTION

PORTASYSTEMIC COLLATERALS

PORTAL HYPERTENSION

YES
NO

CIRRHOSIS

YES
NO

WILSON’S DISEASE

YES
NO

PRIMARY BILIARY CIRRHOSIS

YES
NO

CHRONIC ACTIVE HEPATITIS

AUTOIMMUNE CHRONIC HEPATITIS

YES
NO

Figure 4: Causal graph corresponding to the Hepar rule in Figure 3; additional causal knowl-
edge is derived from textbooks. Added variables are dashed.
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cause or
risk factor

specific disease
disease-specific

symptom or sign

disease group
group-specific

symptom or sign

...

...

...

...

...

...

Figure 5: Global graph structure for a diagnostic belief network.

as a common cause of ‘cirrhosis’ (via ‘chronic active hepatitis’) and ‘butterfly erythema’. In
a similar way, condition 7 (Kayser-Fleischer rings) caused addition of the vertices ‘primary
biliary cirrhosis’ and ‘Wilson’s disease’, while condition 3 (xanthomata) has been explained
by means of ‘cholestasis’ and ‘plasma lipids’.

This example brings into the picture a third type of reasoning in addition to causal
and heuristic reasoning: taxonomic reasoning. Taxonomic reasoning is based on hierarchical
classification of concepts in groups and subgroups according to common features. The higher
a concept is placed into a hierarchy, the more general it is. In HEPAR, for instance, this type
of reasoning is applied in the rules concerning specific diseases. One of the questions that
arose in representing taxonomic knowledge in a causal graph is whether the arcs between the
vertices should be drawn from vertices representing specific concepts to vertices representing
more general concepts, or the other way around. It is easy to see that, as far as taxonomies of
disorders are concerned, we should follow the first approach, since disorders are categorized
according to common features resulting from the disorders. The resulting method is depicted
in Figure 5. Part of the graph in Figure 4 may thus also be interpreted as a hierarchy, with
the vertex ‘duration’ representing the most general concept, ‘cirrhosis’ and ‘chronic active
hepatitis’ as intermediate concepts, and ‘primary biliary cirrhosis’, ‘Wilson’s disease’ and
‘autoimmune chronic hepatitis’ as the most specific concepts, being specific disorders.

3.3.4 Cycles in graphs and pathophysiological knowledge

Representing causal knowledge as a graph as described in the previous subsection does not
necessarily render a causal graph. As we have discussed in Section 3.1, a causal graph is
by definition acyclic; in representing pathophysiological knowledge, however, cycles may be
introduced. So, the restricted expressive power of belief networks in representing cyclic in-
fuences may hinder a natural representation of medical knowledge. In developing our causal
graphs, we obtained directed cycles representing positive feedback influences, as well as cycles
representing negative feedback influences. Although we do not provide a theoretical solution
to dealing with directed cycles in the article, we show that by means of domain-specific ar-
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guments, the cycles may be cut. Here, we only discuss the handling of negative feedback
influences. The process is illustrated by a causal graph for cirrhosis which we developed in
converting the HEPAR system.

The graph in Figure 6 represents the causal relations between cirrhosis, portal hyper-
tension and ascites (fluid in the peritoneal cavity). As depicted, the distortion of the liver
architecture in cirrhosis may lead to portal hypertension and, as a consequence of a partial
block to hepatic venous outflow, to an increased exudation of hepatic lymph possibly exceed-
ing the reabsorption capacity. In that case, the additional protein-rich lymph exudes from
the liver surface into the peritoneal cavity. Another complication of cirrhosis is an impaired
liver cell function, which may result in a reduced albumin synthesis. Both the albumin loss
to the peritoneal cavity and the impaired synthesis of albumin affect the amount of serum
albumin; the plasma volume determines its actual concentration. When portal hypertension
is transmitted back to the splanchnic area, transudation of fluid into the peritoneal cavity
will result, which is also favoured by a reduced colloid osmotic pressure consequent to reduced
serum albumin. Because of this loss of fluid into the peritoneal compartment and of pooling
of blood in the splanchnic circulation, the ‘effective’ blood volume is reduced. Renal perfu-
sion therefore falls and the kidneys retain sodium (and water), so that the plasma volume
increases. This renal regulatory mechanism is represented as the cycle numbered ‘1’ in Fig-
ure 6. This negative feedback process, which is also effective under normal conditions, takes
care of a stable plasma volume. Splanchnic pooling results through this cycle in a resetting
of the plasma volume to a higher level. Because of this and since the renal regulatory mech-
anism is in fact beyond the scope of the domain, it seems justified to draw an arc between
‘splanchnic pooling’ and ‘plasma volume’, and to remove the remainder of the cycle from the
graph. The second cycle depicted in the graph represents a pathological negative feedback
process. The effect of splanchnic fluid transudation on the plasma volume, however, is undone
by the above-mentioned renal regulatory mechanism. Therefore, cycle 2 may safely be cut by
removing the arc from ‘splanchnic fluid transudation’ to ‘plasma volume’.

3.3.5 Final adjustment of the causal graph

In addition to the problem of handling cyclic causal influences in a causal graph, we have to
solve the problem of keeping the number of vertices as small as possible. The main reasons
for this are:

• Since many of the corresponding variables are hardly accessible for observation, prob-
abilities with regard to them will not be available in literature nor obtainable from
experts.

• Inference speed will decrease considerably as the number of variables in the belief net-
work increases.

We recognize two methods for reducing the number of vertices. The first one involves cut-
ting off dead-end paths without any vertices representing diagnostic hypotheses or disease
manifestations. Because paths not involving such vertices are not of interest in diagnostic
problem-solving, they may be removed. In the second approach, we omit some of the in-
termediate vertices; the remaining ones are connected in an obvious way, as is illustrated in
Figure 7 which has been obtained from Figure 6.

The gain expected from a reduction of the number of additional vertices should be weighted
against the loss of information involved. Leaving out intermediate steps in causal mechanisms
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SODIUM RETENTION

ASCITES

YES
NO

OEDEMA

YES
NO

RENAL PERFUSION

SPLANCHNIC FLUID TRANSUDATION

EFFECTIVE BLOOD VOLUME

SPLANCHNIC POOLING

SERUM ALBUMIN

< 30 g/l
30 − 40 g/l
40 − 55 g/l

COLLOID OSMOTIC PRESSURE

LIVER SYNTHESIS CAPACITY

PLASMA VOLUME

PRESSURE SPLANCHNIC AREA

ALBUMIN LOSS

LIVER CELL MASS

HEPATIC LYMPH EXUDATION

PORTAL HYPERTENSION

YES
NO

LIVER ARCHITECTURE

CIRRHOSIS

YES
NO

1

2

Figure 6: Cycle 1 represents a negative feedback process for keeping the plasma volume up to
a constant level. The effect of splanchnic pooling on this process basically is an adjustment
of the plasma volume to a higher steady state. It therefore seems justified to eliminate the
dashed vertices and redirect the arc departing from ‘splanchnic pooling’ to ‘plasma volume’.
Since the effect of splanchnic fluid transudation on the plasma volume is undone by the
above-mentioned regulatory mechanism, cycle 2 can harmlessly be interrupted by removing
the crossed arc.
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OEDEMA

YES
NO

ASCITES

YES
NO

SERUM ALBUMIN

< 30 g/l
30 − 40 g/l
40 − 55 g/l

PORTAL HYPERTENSION

YES
NO

CIRRHOSIS

YES
NO

Figure 7: A strongly simplified version of the graph in Figure 6. Vertices not discerned in
HEPAR have been removed. A pair of vertices has been connected by an arc iff in the original
graph a path existed between them.

renders the network harder to interpret and harder to adjust. We have therefore been very
reluctant in applying this method.

3.4 Probability assessment

3.4.1 Sources of probabilistic information

After having carried out the steps discussed above, several causal graphs were obtained. In
turning these into belief networks, we had to find a fill-in for the assessment functions by
(conditional) probabilities.

On first thought, we hoped it might be possible to derive this probabilistic information
from the certainty factors specified in the production rules in the HEPAR system. However,
recall from the preceding sections that none of the production rules could directly be translated
into a causal graph with the conclusion as a vertex having incoming arcs originating from
vertices representing the conditions. So, the certainty factors specified in the production
rules could not be applied as the basis of probability assessment. We have therefore consulted
standard medical textbooks for collecting such probabilistic information [34, 21].

One of the difficulties encountered in obtaining assessment functions from medical litera-
ture is that usually in describing diseases a non-numerical notion of uncertainty is employed,
featured by terms such as ‘rare’, ‘common’, ‘almost all’, etcetera. In case probabilistic in-
formation is specified, it is often incomplete. Also, available conditional probabilities may
concern variables not causally related to each other, usually rendering these numbers useless
for specifying the assessment functions in a belief network. Such information can, however,
be applied for the evaluation of a belief network. Furthermore, probabilistic information from
the literature is not always based on the population of the country concerned. Because factors
such as hospital referral patterns and geographical variation in disease presentation play a
role, probabilistic information available from studies carried out elsewhere may not be useful.
Non-conditional probabilities seem to be more susceptible to population characteristics than
conditional probabilities are.
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WILSON’S DISEASE (= D)

YES (= d1)
NO (= d2)

SERUM CAERULOPLASMIN (= SC)

< 200 mg/l (= sc1)
200 − 300 mg/l (= sc2)
≥ 300 mg/l (= sc3)

WILSONIAN SYMPTOMS (= S)

YES (= s1)
NO (= s2)

HEPATIC COPPER (= HC)

20 − 50 µg/g (= hc1)
50 − 250 µg/g (= hc2)
≥ 250 µg/g (= hc3

WILSON’S DISEASE GENOTYPE (= G)

HOMOZYGOUS (= g1)
HETEROZYGOUS (= g2)
NORMAL (= g3)

AGE (= A)

0 − 6 (= a1)
6 − 10

10 − 16
16 − 25

.

.

.
25 − 40
≥ 40 (= a6)

Figure 8: Causal graph representing some qualitative knowledge with regard to Wilson’s
disease.

One way to simplify obtaining probabilistic information is to reduce the number of parents
of a given vertex in a causal graph. This may be done by introducing ‘summarizing’ interme-
diate vertices, a technique known as ‘divorcing multiple parents’ [19]. The main advantage of
this technique is that conditional probabilities P (V = v | v1 ∧ · · · ∧ vn) where n is small, say
less than 4, are much easier to estimate than for n large. For our application, the number of
parents of vertices was always limited.

3.4.2 Estimating probabilities

We shall illustrate the process of probability assessment using information from medical liter-
ature, by discussing the belief network we obtained for Wilson’s disease in some detail. This
disorder is attended with low levels of serum caeruloplasmin and progressive copper accumu-
lation in the liver. To be more precise, it is the genotype with regard to this disease which
influences serum caeruloplasmin and hepatic copper levels. The capacity of the hepatocytes
to store copper is eventually exceeded and release into blood and uptake in extrahepatic
sites occurs, causing extrahepatic disease and Kayser-Fleischer rings. In Figure 8, the rela-
tionships among the above-mentioned concepts have been represented by means of a causal
graph. Clinical manifestations, here summarized in the vertex ‘Wilsonian symptoms’, can be
due to liver involvement as well as to involvement of other organs.

From the observation that Wilson’s disease is a recessively inherited disorder all homozy-
gous subjects will eventually have symptoms of, the values for the assessment function for the
vertex ‘Wilson’s disease’ follow immediately. Only subjects with a pair of ‘Wilson’s alleles’
have the disease. Hence, the values of the assessment function γD are as depicted in the right
half of Table 2.

According to Mendelian laws, we have

P (g1) = P (g1) · P (g1) +
1

2
P (g1) · P (g2) +

1

4
P (g2) · P (g2)

in non-consanguineous societies. Rewriting this equation results in

P (g2) = −P (g1) +
√

P (g1) · (4 − 3P (g1)).
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γG(gi) γD(dj | gi) Wilson’s disease
Wilson’s disease genotype yes no
Homozygous 0.00003 Homozygous 1 0
Heterozygous 0.01092 Heterozygous 0 1
Normal 0.98905 Normal 0 1

Table 2: Assessment functions γG(gi) and γD(dj | gi).

From the literature we have that the world-wide prevalence of Wilson’s disease is about one
in 30 000, we can now assess γG. Its values are given in the left part of Table 2.

Here, we have to keep in mind, however, that we are developing a belief network for use
in hepatological patients, in whom the prevalence of Wilson’s disease is much higher. With
regard to ‘age’, a similar problem occurs: age distribution in the population of a specialized
liver unit is very likely to differ from that in normal population. For serum caeruloplasmin,
we found that 94.9% and 20.4% of homo- and heterozygotes for the Wilson’s disease gene,
respectively, have levels below 200 mg/l [30]. A table containing a summary of analytical data
(means and standard deviations) in patients with Wilson’s disease, heterozygous carriers,
and control subjects [29], allowed us to estimate values for the assessment function γSC for
caeruloplasmin levels, using statistical techniques assuming normal distribution.

Hepatic copper
(µg/g dry weight)

Group No. Range Mean ± SD

Wilson’s disease:
Asymptomatic 36 152 – 1828 983.5 ± 368
Symptomatic 33 94 – 1360 588.3 ± 304

Heterozygous carriers 14 39 – 213 117.0 ± 51
Normal subjects 16 20 – 45 31.5 ± 6.8

Table 3: Summary of analytical data in patients with Wilson’s disease, heterozygous carriers,
and control subjects. Source: [29].

The same techniques were applied to the information with regard to hepatic copper levels,
reproduced in Table 3. Contrary to serum caeruloplasmin, the hepatic copper concentration
is not only influenced by the Wilson’s disease genotype, but also by age. This applies only to
homozygous patients, however. In normal subjects and heterozygous carriers, hepatic copper
concentration does not vary with age, so that we have

P (hci | gj ∧ ak) = P (hci | gj) if j 6= 1.

These values are given in the lower half of Table 4, which has been derived from Table 3 as
described above. With regard to homozygotes, conditioning on the values of S (Wilsonian
symptoms) gives us

P (hci | g1 ∧ ak) =
∑

s

P (hci | g1 ∧ ak ∧ s) · P (s | g1 ∧ ak).

We next assumed that the influence of age on hepatic copper can be neglected once we know
whether a Wilson’s disease patient is symptomatic or not. The last equation can then be
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Hepatic copper (µg/g dry weight)

Group < 50 50 − 250 ≥ 250

Wilson’s disease:
Asymptomatic 0.0056 0.0176 0.9768

0.0020 – 0.0139 0.0079 – 0.0356 0.9505 – 0.9901

Symptomatic 0.0384 0.0951 0.8665
0.0166 – 0.0793 0.0542 – 0.1473 0.7734 – 0.9292

Heterozygous carriers 0.0951 0.9004 0.0045
0.0294 – 0.2327 0.7666 – 0.9494 0.0007 – 0.0212

Normal subjects 0.9967 0.0033 0
0.9857 – 0.9994 0.0006 – 0.0143

Table 4: Conditional probabilities of the values of hepatic copper concentration given Wilson’s
disease genotype and presence or absence of Wilsonian symptoms. The probabilities are
derived from Table 3 by statistical methods assuming normal distribution. The probability
intervals on the lower lines are meant as an indication of the accuracy of the corresponding
probabilities on the upper lines.

simplified to:
P (hci | g1 ∧ ak) =

∑

s

P (hci | g1 ∧ s) · P (s | g1 ∧ ak)

Note that eventually all untreated subjects with a pair of Wilson’s disease genes will become
symptomatic Wilsonian patients. Then, Figure 9 provides us with the required information
for assessing the conditional probabilities P (s | g1 ∧ ak). The conditional probabilities P (hc |
g1 ∧ s) can be assessed from Table 4, so that we can compute the remaining values of γHC .

The resulting belief network for Wilson’s disease is shown in Figure 10. The bar charts
in this figure show the prior probability distributions for the variables. We have added
vertices for the inheritance of Wilson’s disease (Wilson’s disease genotype of mother, father
and sibling). Wilsonians symptoms have been futher specified as Kayser-Fleischer rings,
cirrhosis, psychiatric, neurological and renal disease; the corresponding assessment functions
have been obtained from [34].

3.4.3 Preliminary evaluation of the belief network

Evaluation of the belief network for Wilson’s disease has been carried out by using data from
patients with Wilson’s disease, and by comparing the probabilities concerning symptoms
and signs, when certain evidence was entered into the graph, with statistical information
concerning Wilson’s disease in the literature. For purpose of the evaluation, we have tried to
simulate the situation of an internal medicine clinic. In that case, the prevalence of Wilson’s
disease is much higher than in the general population. We assumed that Wilson’s disease will
be encountered in about one in 200 patients. As an example, using data of a patient that
has been used in the evaluation of the HEPAR system, resulted in a probability of Wilson’s
disease of 0.774; the HEPAR system was also capable of concluding the patient to suffer from
Wilson’s disease with a certainty factor equal to 0.69. Similar results were obtain for five
patients reported in the medical literature [6].
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Figure 9: Cumulative percentage of 121 patients, F (x), with onset of overt symptoms of
Wilson’s disease before age x. Source: [29].
Since eventually all untreated homozygotes for the Wilson’s disease gene will become symp-
tomatic Wilsonian patients, the dashed lines and corresponding percentages give us the proba-
bilities of symptomatic Wilson’s disease in homozygous subjects from the distinct age groups.

The belief network was next evaluation in a test in which, after entering certain combi-
nations of evidence mentioned in the literature, computed probabilities were compared with
qualitative and quantitative statements concerning Wilson’s disease that have appeared in
literature. Because most of these statements were qualitative in nature, it was not possible to
obtain precise evaluation results in this study. We had the impression that the probabilities
computed using the belief network, fitted the descriptions in the literature quite closely.

4 Discussion

Diagnostic problem-solving in medicine can be considered from many different perspectives.
The same is true for computer-based decision-support systems, such as medical expert sys-
tems. On the one hand, assistance in medical diagnosis can be offered by expert systems
employing heuristic reasoning models, based on the experience of clinicians in the manage-
ment of their patients. In such systems, decisions as to which diagnostic procedures ought
be untertaken for a given patient, are implicitly embodied in the knowledge encoded and
is applied by means of some diagnostic strategy [14]. On the other hand, decision theory,
being a combination of probability theory and utility theory, makes it possible to explicitly
reason about such decisions, allowing the analysis of cost/benefit considerations of any action
undertaken by the clinician, an application not readily accessible by the heuristic models.
However, the development of such decision-theoretical systems for areas of the size that can
be handled by current expert system technology, is a major undertaking. It therefore seems
attractive to consider starting the development of such decision-theoretical models by taking
existing heuristic expert systems as a point of departure. Belief networks may be taken as a
starting point for the development of decision-theoretical models.

In the present article, we have described an experiment on converting a rule-based expert
system into a belief network, looking at the notion of belief network primarily as a means for
representing causal medical knowledge. Rule-based systems for medical diagnosis, however,
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Figure 10: Belief network for Wilson’s disease.



REFERENCES 22

mainly represent heuristic knowledge; they lack knowledge about causal directions in relation-
ships between variables. As a consequence, it is generally not possible to design a mapping
that permits the automatic conversion of a rule-based expert system into a causal graph.
Moreover, our study shows that for estimating a probability distribution for a belief network,
the measures of uncertainty associated with the rules in the corresponding rule-based expert
system are of little value. Due to these differences in the type of knowledge represented and
in the formalism used to represent uncertainties, much knowledge required in a belief network
cannot be derived from a rule-based system. Hence, converting a rule-based system into a
belief network requires (re)consulting medical literature and renewed knowledge elicitation
from experts. However, our experiment shows that the knowledge represented in a rule-based
system may be well suited as a foundation for building a belief network upon. Major variables
as well as their outcome spaces can rather easily be derived from it. Moreover, although the
relationships expressed in the rules do not represent causal direction, they still can serve as
an aid in searching for causal relations.

The main bottleneck in the conversion of a rule-based system into a belief network is
the phase in which assessment functions are to be estimated. In our case, it turned out to
be mandatory to consult other sources than the original rule base, in particular the medical
literature. Unfortunately, the medical literature usually contains little suitable probabilistic
information and uncertainty is often described in qualitative terms. When probabilistic in-
formation is provided, the probability distribution is often incomplete or conditioned on the
‘wrong’ variables. Furthermore, probability assessment is essentially population specific; the
patients visiting a specialized medical centre form a population different from the normal pop-
ulation, which is likely to affect especially unconditional probabilities. Variables such as age
and disease prevalence often are associated with unconditional probabilities, whereas these
very probabilities are usually mentioned in literature for normal population. In for instance
[28, 9, 10, 23], similar problems have been recognized in transferring diagnostic systems to
other populations.

The problem of probability assessment can partly be solved by keeping the causal graph
as simple as possible. A great deal of thought should therefore be paid to the construction
of the causal graph, in which the availability of probabilistic knowledge should be taken into
account. Using subjective probabilities may also be a solution. In a study concerning the
assessment of simple conditional probabilities (viz. of certain findings given certain diseases),
Spiegelhalter et al. showed that reliable probability assessments can be obtained from experts
[26]. Moreover, they propose a practical procedure for improving such subjective probabilities
by combining them with observed data. However, since we have tried to construct a belief
network that provides a clear representation of the causal, pathophysiological knowledge
involved, subjective probability assessment becomes much more complicated. In order to
obtain a reliable belief network in such cases, the availability of probabilities computed from
a large series of real-life patients therefore seems inevitable.
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